Nonlinear Dynamics of Cellular and Network Excitability and Oscillations

John Rinzel Computational Modeling of Neuronal Systems Fall 2007

- Wilson-Cowan ('72) rate model for excitatory/inhibitory popul'ns.
- Firing rate model for binocular rivalry competing inhibitory popul'ns + adaptation.
- Rhythms in developing spinal cord -- "excitatory" popul'n, + synaptic depression.

See review chapters: JR w/ B Ermentrout, 1998

Borisyuk w/ JR, 2005

Firing rate model (Amari-Wilson-Cowan) for dynamics of excitatory-inhibitory populations.

$$\tau_e dr_e/dt = -r_e + S_e(a_{ee} r_e - a_{ei} r_i + I_e)$$

$$\tau_i dr_i/dt = -r_i + S_i(a_{ie} r_e - a_{ii} r_i + I_i)$$

Wilson HR, JD Cowan. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12:1-22, 1972.

 $r_i(t)$, $r_e(t)$ -- average firing rate (across population and "over spikes")

 τ_e , τ_i -- "recruitment" time scale

 $S_e(input)$, $S_i(input) - input/output$ relations – typically sigmoidal:

 $S(x)=1/[1+exp((\theta-x)/k)]$ where

 θ – "threshold"; k -- steepness (steeper for smaller k).

a_{ee} etc – "synaptic weights"

Network has no spatial structure; cells are random and sparsely connected.

What are τ_e and τ_i ?

JR: recruitment time constants for the network.

Wilson-Cowan Model dynamics in the phase plane.

Phase plane, nullclines for range of J_e.

Regime of repetitive activity

"Oscillator Death" but cells are firing

Frequency

Dynamics of Perceptual Bistability

Binocular rivalry:

alteration of percepts when different steady images are presented to the two eyes

Perception and activity:

Mutual inhibition with slow adaptation → alternating dominance and suppression

w/ N Rubin, A Shpiro, R Curtu, R Moreno

Idealized Models for Binocular Rivalry

Two mutually inhibitory populations, corresponding to each percept.

Firing rate model: $r_1(t)$, $r_2(t)$

Slow negative feedback: adaptation or synaptic depression.

Wilson; Laing and Chow

$$\tau \, dr_1/dt = -r_1 + f(-\beta r_2 - \phi \, a_1 + I_1)$$

$$\tau_a \, da_1/dt = -a_1 + f_a(r_1)$$

$$\tau \, dr_2/dt = -r_2 + f(-\beta r_1 - \phi \, a_2 + I_2)$$

$$\tau_a \, da_2/dt = -a_2 + f_a(r_2)$$

$$\tau_a >> \tau \, , \qquad f(u)=1/(1+\exp[(\theta-u)/k])$$

Fast variables: \boldsymbol{r}_1 , \boldsymbol{r}_2 phase plane changes slowly, $\boldsymbol{\tau}_a$

Modeling the rhythmic dynamics of developing spinal cord J Rinzel, NYU

An *ad hoc* firing rate model
Predictions/confirmations
A specific mechanism for depression
A minimal cell-based network model
Mean field model?

J Tabak, M O'Donovan, C Marchetti, B Vladimirski

Interneurons Retrogradely Labeled By Calcium Dyes Injected Into The Ventrolateral Funiculus (VLF) Are Rhythmically Active (A.Ritter, P.Wenner, S.Ho)

Synaptic Potentials Are Transiently Depressed After An Episode Of Spontaneous Activity

Basic Model: mutual excitatory network.

Activity level, a(t); availability of synaptic input, n

$$\tau_a a' = a_{\infty}(input)-a$$

$$\tau_a a' = a_{\infty}(n.a)-a$$

Spontaneous Rhythmic Episodes Can Be Modeled By An Excitatory Network With 'Fast' And 'Slow' Depression J Neuroscience, 2000.

Network behavior is modeled by three variables

Network Activity

Activity-dependent Fast depression

Activity-dependent Slow depression $\tau_s s' = s_\infty(a)-s$

$$\tau_a a' = a_\infty(s.d.a)-a$$

 $\tau_d d' = d_{\infty}(a) - d$

$$\tau_s s' = s_\infty(a)$$
-s

Delayed Fast Depression Leads to Oscillations

Fast and Slow Depression Produces Episodic Oscillations

Cycling dynamics: a-d phase plane, s-fixed.

FAST/SLOW Analysis

a-d phase plane, s fixed. Bistable: upper OSC, lower SS

Fast/Slow Dissection -- a-s "phase plane"

"Kick" out of Silent Phase => shorter Active Phase.

J Neuroscience, 2001.

THEORY

low activity state | Ihreshold | Stim | Stim | State | Sta

EXPERIMENT

MORE....?

NMDA blocker...

Reduction Of Connectivity Mimics The Recovery Of Activity During Excitatory Blockade

$$\tau_a a' = a_{\infty}(n.s.d.a)-a$$

Phase space interpretation for effect of reduced connectivity

$$\tau_a a' = a_{\infty}(n.s.d.a)-a$$

n, effective connectivity

MORE....?

LIF cell-based network

N-cell I&F network. w/ J Tabak, B Vladimirski

All-to-all excitatory coupling. Non-identical cells: $I_{min} < I_{j} < I_{max}$ If $I_{max} > 1$ some cells fire spontaneously. Slow depression, no cycles.

$$v'_{j} = -v_{j} + I_{j} - g_{syn}(v_{j} - v_{syn}) \sum_{k} q_{k} s_{k}$$
 $if \quad v_{j}(t_{f}) = 1, v_{j}(t_{f}^{+}) = 0.$
 $q'_{j} = \alpha_{q} P_{q}(t - t_{f})(1 - q_{j}) - \beta_{q} q_{j}$
 $s'_{j} = \alpha_{s}(1 - s_{j}) - \beta_{s} P_{s}(t - t_{f}) s_{j}$

 $q_j(t)$ - fast unitary postsynaptic conductance, $s_j(t)$ - slow depression, $P_{q,s}$ - square pulse of duration $\tau_{q,s}$.

N-cell I&F network; N=50; Imin=0; Imax=1.1

EXC OSC γ, fraction of OSC cells. I=0I=1Large heterogeneity, small γ: 0.75 В Α 0.6 √g_{syn} $(9_{\rm syn}$ 8.0 $g_{\text{syn}}^{}$ 0.45 <s> 0.6 0.4 i <s> 0.3 0.15 0.2 Silent phase 500 1250 2000 2750 3500 2300 2575 2850 3125 3400 t/T t/τ Large heterogeneity, large γ: 0.2 _ıg_{synl} D 0.16 g_{syn} 8.0 $g_{\text{syn}}^{0.12}$ Silent 0.6 phase <s> 0.4 s 0.08 0.04 0.2 1660 500

1625

1250

t/τ

2000

1340

1420

1500

t/τ

1580

875

Fast/slow analysis. Fast spiking dynamics, slow depression.

- asynchronous spiking
- total synaptic conductance is constant for fast dynamics, s_i frozen
- cells are firing periodically, frequency $r_i = r(g_{syn}, I_i)$
- g_i(t) replaced by temporal average

Self-consistency eqn replaces fast dynamics:

$$g_{syn} = \overline{g}_{syn} N^{-1} \sum_{i=1}^{N} s_i(t) \hat{q}(g_{syn}, I_i)$$

Slow dynamics:
$$s_j' = \alpha_s (1-s_j) - \langle \beta_{s,j} \rangle s_j$$
 where $\langle \beta_{s,j} \rangle$ depends on g_{syn} and j

Does self-consistency eqn lead to multi-branched surface, given $\{s_i\}$?

Demonstration of bistability:

Use self-consistency at each t, with current values of $\{s_j\}$ – find 3 states: L, M, U...

U-M coalesce at end of Silent Phase L-M at end of Active Phase

MORE....?

GABA_A-V_{syn}: cloride dynamics

A Mechanism for Depression of Synaptic Current.

A cell's current balance eqn:

$$C_m V_i' = -[I_{spike}(V_i, w_i) + I_{syn} + I_{pump}]$$

where

$$I_{syn} = g_{syn}(V_i - V_{syn}) \sum_j q_{j,i}(t)$$

and for GABA_A-mediated synaptic current:

$$V_{syn} = (RT/F)log([Cl^-]_{int}/[Cl^-]_{ext}).$$

$$V_i < V_{syn} ==> [C1-]_{int} \downarrow ==> V_{syn} \downarrow$$

Changes in [Cl-] $_{int}$ and E_{GABAA} are responsible, in part, for the postepisode depression of evoked currents (Chub & O'Donovan)

Minimal Model for Episodic Rhythm, with $[Cl^-]_{int}$ as Slow Variable

$$V' = -[(V - V_{rest}) + I_{syn}]/\tau_m$$

$$d' = [d_{\infty}(V) - d]/\tau_d$$

$$Cl' = [I_{pump} + I_{syn}]/\tau_{Cl}$$

V(t) is t-averaged membrane potential, d(t) is the fast depression factor, $Cl(t) = [\mathbf{Cl}^-]_{int}$

$$I_{syn} = g_{syn} \ d \ f(V) \ (V - V_{Cl})$$

with

$$V_{Cl} = (RT/F)log(Cl/[Cl^{-}]_{ext}).$$

f(V), the firing frequency at V, is sigmoid increasing. $I_{pump}, I_{syn} > 0$ correspond to inward Cl^- flux.

FAST/SLOW Analysis

SUMMARY

Ad hoc Mean Field model:

Episodic rhythms - generated from mutual excitation with slow synaptic depression;

- fast depression yields cycling during episodes.

Bistability of fast subsystem leads to predictions for correlations between SP duration and next AP duration.

Prediction/test for effect of reduced connectivity.

GABA_A synapses are "functionally" excitatory, ie $V < V_{Cl}$; V_{Cl} is depolarized and it oscillates together with episodes; minimal model shows it.

N-cell network model:

Cycling during AP? Stochastic synapses for initiating next AP?

Dynamics of heterogeneous network.